\qquad

1. Determine whether each system of equations has No solution, One solution, or Infinitely Many solutions.

	No solution	One solution	Infinitely Many solutions
$y=\frac{3}{4} x+8$ $3 x-4 y=12$	(A)	(B)	(C)
$x-y=7$ $2 x-2 y=14$	(D)	(E)	(F)
$6 x-y=8$ $2 x+2 y=-6$	(G)	(H)	(I)

2. Look at this system of linear equations.

$$
\left\{\begin{array}{c}
y=-4 x+5 \\
-6 x+2 y=-4
\end{array}\right.
$$

What is the solution to the system of linear equations?
A. $x=0, y=5$
B. $x=-1, y=9$
C. $x=1, y=1$
D. $x=1, y=9$
3. At one of the stands at the Lake Worth Farmers Market on weekends, a package of peppers cost $\$ 6$ each and a bag of lettuce costs $\$ 2$ each. This weekend the stand sold 90 packages of peppers and bags of lettuce altogether for $\$ 388$.
a) How many packages of peppers were sold?
b) How much money was earned on peppers?
c) How many bags of lettuce were sold?
d) How much money was earned on lettuce?
4. A graph of a system of two equations is shown.

What is the solution of the system?
A. $x=-2, y=5$
B. $x=5, y=-2$
C. $x=0, y=1$
D. $x=2, y=0$
5. Choose values for p and q so that the system of equations shown has no solution.
$y=p x-4$
$y=-7 x+q$
A. $p=-7, q=-4$
B. $p=-7, q=8$
C. $p=5, q=-4$
D. $p=-4, q=-7$
6. A line goes through the points $(0,5)$ and $(1,0)$. What is the x-coordinate of the intersection of this line with the line $y=2 x+10$?
A. $x=\frac{-5}{7}$
B. $x=\frac{-5}{3}$
C. $x=\frac{-1}{2}$
D. $x=\frac{15}{7}$

