1. Determine whether each system of equations has No solution, One solution, or Infinitely Many solutions.

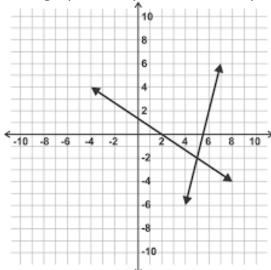
	No solution	One solution	Infinitely Many solutions
$y = \frac{3}{4}x + 8$ $3x - 4y = 12$	A	В	©
x - y = 7 $2x - 2y = 14$	D	E	F
6x - y = 8 $2x + 2y = -6$	G	H	(I)

2. Look at this system of linear equations.

$$\begin{cases} y = -4x + 5 \\ -6x + 2y = -4 \end{cases}$$

What is the solution to the system of linear equations?

A.
$$x = 0$$
, $y = 5$


B.
$$x = -1$$
, $y = 9$

C.
$$x = 1, y = 1$$

D.
$$x = 1, y = 9$$

- 3. At one of the stands at the Lake Worth Farmers Market on weekends, a package of peppers cost \$6 each and a bag of lettuce costs \$2 each. This weekend the stand sold 90 packages of peppers and bags of lettuce altogether for \$388.
 - a) How many packages of peppers were sold?
 - b) How much money was earned on peppers?
 - c) How many bags of lettuce were sold?
 - d) How much money was earned on lettuce?

4. A graph of a system of two equations is shown.

What is the solution of the system?

A.
$$x = -2$$
, $y = 5$

B.
$$x = 5$$
, $y = -2$

C.
$$x = 0, y = 1$$

D.
$$x = 2, y = 0$$

5. Choose values for p and q so that the system of equations shown has no solution.

$$y = px - 4$$

$$y = -7x + q$$

A.
$$p = -7$$
, $q = -4$

B.
$$p = -7$$
, $q = 8$

C.
$$p = 5$$
, $q = -4$

D.
$$p = -4$$
, $q = -7$

6. A line goes through the points (0, 5) and (1, 0). What is the x-coordinate of the intersection of this line with the line y = 2x + 10?

A.
$$x = \frac{-5}{7}$$

B.
$$x = \frac{-5}{3}$$

C.
$$x = \frac{-1}{2}$$

D.
$$x = \frac{15}{7}$$